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Conditional-Sum Addition Logic*
J. SKLANSKY{, SENIOR MEMBER, IRE

Summary—Conditional-sum addition is a new mechanism for
parallel, high-speed addition of digitally-represented numbers. Its
design is based on the computation of ‘‘conditional” sums and carries
that result from the assumption of all the possible distributions of
carries for various groups of columns. .

A rapid-sequence mode of operation provides an addition rate
that is invariant with the lengths of the summands. Another ad-
vantage is the possibility of realizing the adder with ‘‘integrated
devices” or ‘‘modules.”

The logic of conditional-sum addition is applicabie to all positive
radices, as well as to multisummand operation.

In a companion paper, a comparison of several adders shows that,
within a set of stated assumptions, conditional-sum addition is

superior in certain respects, including processing speed.

* Received by the PGEC, December 2, 1959; revised manuscript
received, March 31, 1960.
t RCA Labs,, Prinoeton. N.].

I. INTRODUCTION

ONDITIONAL-sum addition is a new scheme
« , of parallel, high-speed addition for digital com-
puters. A comparative evaluation of several
binary adders! indicates that the conditional-sum adder
(CSA) is quantitatively superior in certain important
respects, including computation speed.
In the present paper the basic concepts of CSA logic
are presented, and a specific AND-OR-NOT network
realizing the CSA is described.

1 J. Sklansky, “An evaluation of several two-summand binary
adders,” this issue, p. 213.
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II. NorMAL MODE OF OPERATION

We explain the normal operation of CSA by the fol-
lowing example.

Fig. 1 shows the conditional-sum addition of two
binary-coded numbers:

#=1011101101101101
y=0001100110110110,
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Fig. 1—Example of a conditional-sum addition.

We represent by 7o, 71, T3, Ts, T4 the successive time
intervals during which “conditional” sums and carries
are computed. During 7o two sum-and-carry pairs for
each column are computed: one pair under the assump-
tion (assumption A,) that the carry brought to each
column is 0, and the other pair under the assumption
(assumption B,) that the carry brought to each
column is 1. An exception to this is at column 0, where
only A, is assumed, since the carry brought to that
column is known to be 0. The first row belonging to 7,
in Fig. 1 contains the conditional sums under assump-
tion A,, the second row has the conditional carries under
the same assumption, and the third and fourth rows
contain the conditional sums and carries under assump-
tion By. In particular, consider column 0. Here we have,
using the well-known Boolean relations for sum and
carry bits,

5 =20Dy=001=1

€1 = %o'yo=0-1=0,
(We define our symbols in Appendix 1.) For column 1
we have

=26 n=100=1

' =y =1.0=0

S;‘ = S|° ®l=0

al=5Vy=1V0=1

In a similar manner we find the other entries in the 7,
columns.
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During 7, conditional sums and carries for pairs of
columns (namely, column numbers 0 and 1, 2 and
3,-++,and 14 and 15) are computed simultaneously,
under the assumptions (4,) that the carry brought to
each pair of columns is 0, and (B;) that this carry is 1.
The rows belonging to 7, are arranged in a manner simi-
lar to those of r,.

Continuing this process, the “conditional” sums and
final carries are computed for tetrads of columns during
73, for octads of columns during 7;, and for the entire
sixteen-column group during r¢. During 7, the sums and
final carry produced are no longer “conditional,” but are
equal to the sum bits and the final carry for the two
summands, x; and y,.

To undérstand the process in more detail, consider
the pair of 7, columns (0, 1) (referred to hereafter as a
“ry array”). The entries for the upper half of r,-column
0 are the same as those of the upper half of 7¢-column 0,
since the entries in these halves both correspond to the
case ¢o=0. However, since the carry for column 0 will no
longer be needed, only the sum bit need be entered in
the 7, array. The entries in the upper half of r-column 1
are found from ro-column 0 in the following way: If the
second entry of re-column 0 is O—i.e., if ¢,°=0--then
the upper nalf of r-column 1 is identical to the upper
half of ro-column 1; if ¢,°=1, then the upper half of
7i-column 1 is identical to the Jower half of ro-column 1.
The reason for this is that the upper half of any 7,
column corresponds to a zero-valued incoming carry for
that column, while the lower half corresponds to a one-
valued incoming carry. Thus, since ro-column 0, vis.,

4]

has a second entry of 0, it follows that r-column 1 is
identical to the upper half of ro-column 1, vis.,

1
upper half of
0
1
Summarizing,
1 17 1 17
00 0
19 AIIay 0 = 7, array
hone 1 —l ad -
In a similar manner,
"1 0 "0 0
01 1
7o array 0 1 = 1 array o 1
|1 1] 1
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Fig. 2—The logic circuit of a seven-bit conditional-sum adder. (a) The over-all circuit; (b) an AND-OR-NOT circuit for H, a portion of
which is the circuit for H4; (c) and (d): Q1 and Qs in terms of M; (e) an AND-OR-NOT realization of M. The circuits for Qs and other

Qs's can be inferred from (c) and (d).

In the above situation, the lower half of the 7, array is
determined by the lower right-hand carry bit in the 7,
array, t.e., the bit in the lower right-hand corner,

For later intervals, 7;, the operation is similar except
that greater numbers of columns are involved at each
step. For instance, to obtain columns 4 to 7 of interval

7 the following transformation takes place:

1101 0001
T1array =5 79 array ! .

0010 0010

1 1 1
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For each interval , the columns in Fig. 1 are marked
off in groups of 1, 2, - - -, 2/, . . . according to the size
of the group of columns participating in the transforma-
tion from r;_, to 7.

1. RAPID-SEQUENCE MoDE oF OPERATION

In the event several sums are to be computed suc-
cessively, one may increase the effective speed of the
adder by storing the results of cycle 7; for use during
cycle 7;.; simultaneously another set of conditional
sums and carries could be computed for a different pair
of summands. Consequently, the addition speed of this
“rapid-sequence” mode of operation would be faster
than that of the normal mode by the factor

1
D=f—3(1'0+1'1+"'+1'j+"'+1‘,). (l)

where 724 pulse repetition period. When rp=r¢=1,
= ... =7, this expression reduces to

D=p+1. (2)
Since n =2 (see Fig. 1), D can be expressed in terms of n:
D = logs 2a. ‘ 3)

IV. A SucGEsTED LoGic CIRCUITRY

The suggested logic circuitry, indicated in Fig. 2,
consists entirely of AND gates, OR gates, NOT gates,
and their interconnections. The timing and storage cir-
cuitry for the controlling sequence of operations is
omitted. Actually this timing and storage circuitry is
not necessary for the basic operation of adding two
summands. However, when many summands are to be
added in rapid sequence, in the manner discussed in the
previous section, then it is advantageous to have timing
control. Storage circuitry is needed here only for guar-
anteeing the proper synchronism of signals; if the AND
gates and OR gates imposed pure delays with no signal
distortion, and if the delays of all the AND gates were
exactly the same, then no storage circuitry would be
necessary.

Fig. 2(a) shows the information-flow diagram for a
seven-column adder; adders for greater numbers of
columns can be inferred from the figure.

Q. and @y, shown as blocks in Fig. 2(a), may be
realized in terms of a basic module, M, whose AND-
OR-NOT circuit is given in Fig. 2(e). The suggested M
realizations for Q, and Q, are given in Fig. 2(c) and 2(d).
The Qi's for i>2 can be realized by networks easily in-
ferred from the realizations of Q, and Q,. A suggested
AND-OR-NOT realization of H is given in Fig. 2(b).

For neatness, not all the connections are shown ex-
plicitly as continuous lines. For instance, the signals s,°
and s!, produced by the H of column 1, are brought to
the input terminals of Q; of column-pair (1, 2). These
connections are indicated in the figure by labels on the
input and output leads.

A warning to circuit designers: the-maximum “fan-
out” (the number of input leads emanating from an out-
put terminal) is an increasing function of the summand
length. This can be verified from an examination of
Fig. 2, especially parts (c) and (d). The “fan-out” is an
index of the load that a gate must be capable of
handling.

V. EXTENSIONS OF THE Basic CONCEPTS

The basic concepts of conditional-sum addition can
be extended in at least the following two directions:
1) Positional number systems with radices greater than
2, in which a numeral xy - + - x;%¢ represents the number

N

pIETS

i=0 .
where 7, a positive integer, is the radix of the number
system. 2) Multiple-summand addition, in which more
than two summands are added simultaneously.

A. Higher Radices

It is possible to apply conditional-sum addition to
higher-radix number systems with little change in the
basic concepts. We illustrate this in Fig. 3 by an
example in the decimal system. The alphabetical sym-
bols here are the same as in Fig. 1, and the description
of the operation is similar to that given in Section II for
the binary case.
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Fig. 3—Example of a conditional-sum addition
in the decimal system

B. M ulh'summand Addition

The scheme of conditional-sum addition may be ap-
plied to the simultaneous addition of more than two
summands. This may be done by storing and computing
a conditional sum and a conditional carry for each possi-
ble value of an incoming carry at each appropriate col-
uma. For instance, in four-summand addition the possi-
ble incoming carries for any column are 0, 1, 2, and 3.
Conditional sums and carries must be computed for
each of these four carries during each of the cycles 7;.

For the general case of p-summand addition the possi-
ble carries are 0, 1, - .., p—1, no matter what the
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radix may be.? Thus it should not be difficult to syn- VIII. CONCLUSIONS AND SUMMARY
thesize a conditional-sum adder that will handle both

multiple summands as well as radices greater than 2. Conditional-sum addition has the following attractive

properties:

V1. Hieu SpeED 1) In the “normal” mode of operation, the addition

In a companion paper! we show that the CSA is time per column is a decreasing function of the number

basically faster in processing speed than several other of columns, n. (This time is roughly (log: 2n)/n gate
well known adders. The primary assumptions in that delays.)

analysis are
2) In the “rapid-sequence” mode of operation, the

time between the production of successive n-bit sums is
invariant with respect to ».

1) That the fundamental building blocks are a two-
input AND gate, a two-input OR gate, and a one-
input NOT gate;

2) That the AND gate and OR gate impose equal 3) Both the normal and the rapid-sequence modes of
delays, while the NOT gate imposes no delay. operation are completely synchronous, so that the con-

trol circuitry associated with a CSA adder should be

simpler than for comparable asynchronous mechanisms.

VII. THE PossiBiLiTy oF USING
“INTEGRATED DEVICES”

. We note that the conditional-sum logic circuitry = 4) The logic circuit suggested for CSA contains many
just described lends itself to realization by a large identical AND-OR-NOT subnetworks, thereby lending
number of identical “integrated devices” or “modules” itself to realization by “integrated devices” or “modules.”
(labeled M in Fig. 2). The use of “modular” construc-
tion is likely to be economically attractive, especially
with the recent development of “integrated” solid-state

5) CSA may be extended to other modes of arith-
metic, specifically: multisummand addition and non-
binary radices.

devices.? :

: jTh'lf is rﬂved r‘i‘n Aspgmﬁf ‘lbi “I 4 devi 6) CSA proves superior to other schemes in addition

. T. Wallmark and S. M. Marcus, “Integrat evices usin| P H Seatl H H _ i

direct-coupled unipolar transistor logic.” IRE. TRANS. ON F.u:cq !oglc in ce:'tam quantitative respects, including process 5

TRONIC COMPUTERS, vol. EC-8, pp. 98-107; June, 1959, ing speed.
APPENDIX I

DEFINITIONS OF SYMBOLS

@ =plus, modulo 2.
+=AND.
V =INCLUSIVE OR.
t=column number, beginning with column 0.
j=ordinal number of an interval, 75, during which an array of conditional sums and carries are produced.
%4, ys=summand bits of column 4.
¢;=carry bit entering column 4.
si=sum bit of column .
cd=carry generated at column ¢—1, assuming ¢;1 =0, ;
¢t =carry generated at column ¢—1, assuming ¢;_y=1. |
¢*® =carry generated at column ¢—1, assuming ¢, s=0. '
¢*'=carry generated at column ¢—1, assuming cis=1.
c**9=carry generated at column £—1, assuming ¢;.s=0.
c;:’"-carry generated at column §—1, assuming cis=1.

S .
¢*  *=carry generated at column ¢—1, assuming ¢;s-1=0.

Penstam Y
¢ ‘" =carry generated at column £—1, assuming c¢s_1=1.
s =sum generated at column £, assuming ¢;=0.
s =sum generated at column £, assuming ¢;=1.
4

Pt
5{* " '*9=gum generated at column ¢, assuming ¢;—» =0.
R .

——
s&*l=gum generated at column ¢, assuming ¢;_a=1.

The graphical symbols used in the figures are self-explanatory.
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APPENDIX []
A THEOREM FOR MULTISUMMAND ADDITION

In an addition of any p positive summands, the carry
produced by any column has a maximum possidle value
of p—1.

This result is independent of the radix, r, and includes
the case of a carry consisting of more than one digit,
i.e., a carry 2r. There is no restriction on the length of
the summands.

Proof: Consider column 0 . The maximum possible
value of its sum is pr—p. We ask the reader to verify
that the corresponding output carry of this column is
p—p1, where p, is the positive integer satisfying the
diophantine inequality

(r=Dr+1<p< pur. @

(i.c., p is 1 plus the number remaining after the lowest-
order digit of the r-ary representation of p—1 is de-
leted). As a consequence of (4) and the fact that r>1,
it follows that

1Sph <y ()

The maximum possible sum produced by column 1 is
therefore pr—p,. Hence, by an analysis similar to that

used for column 0, we conclude that the corresponding
output carry of column 1 is p~ p,, where p, is the posi-
tive integer satisflying

r—Dr+1Sp < tar. (6)
Hence,
1<phs<p (n

Continuing in this manner, we find that the maximum
possible input carry of column k is p — ps, where

=N+ 1< o S pur 8
and that

1ShSpaS  SphsSn<p 9 -
Hence the output carry of column k cannot exceed p—1.
Since & is arbitrary, the theorem is proved.
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